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synopsis 
Transient flow behavior of an incompressible quasi-linear viscoelastic fluid under sud- 

denly applied constant pressure as well as under a periodic pressure gradient was investi- 
gated using a three-parameter relaxation function. In the light of these solutions, the 
roll of viscoelastic relaxation in the overshooting of volumetric flow rate and the effect 
of viscoelastic parameters on the mean square velocity profile are discussed. 

INTRODUCTION 
The transient flow behavior of linear viscoelastic fluids under small stress 

and deformation rate was studied by several investigators. '-5 The rheo- 
logic equations used in all of these studies assume some specific forms of the 
material functions. For example, using one of the simplest forms of the 
Oldroyd equations? with three rheologic constants, Chong and Vezzi5 
showed that the stress equation of motion for the flow under a constant 
pressure gradient can be transformed to an equation similar to the forced 
vibration of an elastic material. Based on this equation they discussed 
several possibilities in transient flow behavior. 

In  the present work we use an integral rheologic equation for linear 
viscoelasticity proposed by FredricksonlO and Lodge. l4 

(1) 
ax$ ax9 

$(t  - t') - ~ e ""(X,  t')dt' SI, ax" ax" uij(z, t )  = 2 

where utj(x, t )  is the stress tensor; $(t - t') is the relaxation function; 
X i  are the material coordinates, that is, the material point which has co- 
ordinates xi at  time t has coordinates Xi at time t'( 5 t )  ; and e""(X, t') is the 
rate of strain tensor a t  x and t'. 

FredricksonlO shows that the three-constant Oldroyd fluid under a small 
stress and deformation rate is a special case of eq. (1) with relaxation func- 
tion given by 
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where 6(t) denotes the Dirac delta function and XI and are the relaxation 
and retardation times, respectively. 

According to Fredrickson,lo the material described by eq. (1) would es- 
sentially behave like Newtonian fluids in steady laminar shear flow if the 
relaxation function satisfies the following condition : 

LY = 1- t$(t)dt (4) 

where eq. (3) describes the steady state Newtonian viscosity and eq. (4) is 
the normal stress coefficient. If these integrals do not exist, the material 
is an elasticoviscous solid and cannot exhibit steady flow without fracture. 

Though eq. (1) is motivated by classical linear viscoelasticity for small 
deformation, it is important toaote that the restriction of small deformation 
is not inherent in the equation and the principle of invariancee is satisfied. 
Therefore, it may be called quasi-linear viscoelasticity. 

In  this work, we consider two transient flow problems of viscoelastic 
materials whose stress-deformation relation follows eq. (1) with relatively 
simple relaxation functions. The problems to be studied are the startup 
of an incompressible fluid in a cylindrical tube under a constant pressure 
gradient as well as under a periodic pressure gradient. 

FLOW UNDER SUDDENLY IMPOSED CONSTANT PRESSURE 

Let us consider the transient flow of this fluid in a long cylindrical tube 
of constant cross section. The fluid is a t  rest in the tube for t 5 0; and 
a t  t > 0, a constant pressure is suddenly applied to one end of the tube and 
maintained. If we assume the fluid is incompressible, the physical cow- 
ponents of the velocity in cylindrical coordinates ares 

U, = U, = 0 for all t 

The material and current coordinates are 

The rate of strain tensor is given by 
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From eq. (1) we obtain shearing stress and normal stress components, re- 
spectively : 

The equation of motion in cylindrical coordinates is 

Since the pressure gradient in eq. (7) is maintained constant for t > 0, it is 
independent of time. 

We first convert eq. (7) to an integro-differential equation by multiplying 
rJO(Tir) and integrating the resulting equation with respect to r from 0 to 
a, where a is the tube radius: 

br 
$(t - t ’ )  

bP 
bZ 

where 9 = --. 

Let U,(ct, t )  = J rUJo(Tir)dr; then it is easy to show that eq. (8) 
0 

reduces to 

dU€I U bU 
02 T r  dr p - = - Jl(Pia) + Ti Jl(Ciy)r 1’ (t  - t ’ )  - dt’dr (9) 

where Pi satisfies Jo(Tia) = 0. 

We can rearrange the order of integration of eq. (9) to give 

Equation (10) can be further reduced to 

Equation (11) states that a solution for the velocity distribution at  
present time t requires knowledge of the velocity distribution at a time t’ 
prior to t. This difficulty can be avoided, however, if we take the Laplace 
transform of eq. (11) and note that the second term on the left side of the 
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equation is a convolution integral. 
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Thus we obtain 

where S is the Laplace transform variable, and the initial condition Ux 
(it, 0) = 0 is used. From eq. (12) it follows that 

where v is the kinematic viscosity. It is necessary to obtain u H ( { i ,  t )  by 
inverse transform of eq. (13). Before we do so, it may be of interest to 
study the validity of eq. (13) in the limiting case where t + m ,  the steady 
state. For this purpose we apply one of the important properties of the 
Laplace transforms which states that 

Thus we see eq. (13) can be reduced to 

where 

Now we apply the Hankel inversion theorems to eq. (15) to obtain the veloc- 
ity distribution at  steady states: 

where the summation extends to all positive roots of l i .  

Newtonian fluids. 
is verified. 

Laplace transform. Symbolically this is denoted as 

Equation (17) is indeed the familiar parabolic velocity distribution for 
Therefore, the validity of eq. (13) in the limiting case 

Returning to eq. (13) we obtain an expression for U x ( l i ,  t )  by inverse 

The velocity distribution is now obtained by applying the Hankel inversion 
theorem to eq. (18). The reader should realize that we are using a double 
transform technique to solve for the velocity. Of course the function 
U(r,  t )  must satisfy Dirichlet's condition* in the intervals (0, a )  for the 
inversion theorem to be valid : 
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The actual inverse transform of eq. (19) may ~ be otained if we know the 
Laplace transform of the relaxation function, +(S). Equation (19) shows 
clearly how the stress relaxation function affects the velocity distribution 
during the transient flow. 

As a simple example, let us assume the relaxation function is given by 
eq. (2). The Laplace transform of the relaxation function is 

Substituting eq. (20) into (19), we obtain 

(21) 

The inverse transform of eq. (21) can be obtained readily by combination 
of the Heaviside partial fractions theorem and the convolution integral. 
There are three possible solutions for the equation depending on the values 
of X1 and xz. Here we will examine two of them: 

(22a, b) 

The velocity distribution for the condition (22a) becomes 

1 
2x1 

where ai = 1 + vl i2Xz,  P i  = &v{i2, and N = - (at2 - P J ' / 2 .  

This condition implies that at2 - P1 > 0. If the ratio of Xz/X1 approaches 
zero, then we have Pi - ai2 > 0, and the velocity distribution for the condi- 
tion (22b) becomes 
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Steady S t a t e  

0 0.5 1.0 1.5 2 2.5 

t (T ime  i n  sec.) 

Fig. 1. Instantaneous volumetric flow rate (dimensionless) as a function of time. 
Case 1: zl, 0.75 sec; z2, 0.60 sec; VI 10.4 cm2/sec; a, 1.0 cm. Case 2: All 1.6 sec; A*, 
0.04 sec; y1 15.0 cm*/sec; a, 1.0 cm. 

In the limiting case where XZ = 0, eq. (24) reduces to a Maxwell fluid. 
The volumetric flow rates, Q ( t ) ,  for conditions (22a,b) are obtained from 

eqs. (23) and (24). They are, respectively, 
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t ( T i m e  in sec.) 

Pig. 2. Instantaneous volumetric flow rate as a function of time: XI, 0.75 sec; hz, 
0 sec; Y, 10.4 cm2/sec; a, 1.0 cm. 

Equations (25a, b) are computed using several difTerent values of rheo- 
logic parameters and the results are shown in Figures 1 and 2. Figure 1 
shows overshoots in volumetric flow rate and qualitatively this is in agree- 
ment with experimental result reported by Meissner. l 3  

As the ratio of retardation to relaxation time approaches zero, the 
volumetric flow rate exhibits damped oscillatory motion. This is shown 
in Figure 2. 

The normal stress component can now be computed by substituting 
eq. (23) or (24) into (6), but we will omit the resulting final equation. 

FLOW UNDER VARYING PRESSURE 

Let us consider another problem in which the fluid is a t  rest in a long 
cylindrical tube for t 5 0, and for t > 0 it is pushed out by a frictionless 
plunger a t  a constant speed. An example of this type of flow is encountered 
in an Instron capillary rheometer. We are interested in a relationship be- 
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tween pressure variation and velocity development. Under this condition 
eq. (8) becomes 

where @(t) denotes the time dependent pressure gradient. We take the 
Laplace transform of eq. (26)  and obtain 

Solving for u,(li, S), we obtain 

The inverse transform of eq. (28)  is denoted as 

The velocity distribution can now be obtained by applying the Hankel 
inversion theorem to eq. (29) .  Thus, we have 

where the summation extends to all positive roots li .  Equation (30) 
shows how the pressure variation and the relaxation function both affect 
the velocity distribution during the transient flow. 

As a simple example, we assume again that the relaxation function is 
given by eq. (20) .  Substitution of eq. (20)  into (30) yields 

Since the inverse transform of the relaxation part (the right-hand side term 
in the bracket) of the above equation is known in the previous example, we 
can express eq. (31) in terms of the convolution integral. Here we con- 
sider a solution of eq. (31) for the condition (24a) where at2 - pi > 0. 
Equation (31) becomes: 

X cosh ( f f i 2  - pt)'/"t - t ' )  dt ' )  (32) 
2hl 

where @(t') is the pressure gradient as a function of variable time, 1'. 
Equation (32) gives a relationship between pressure and velocity distri- 

bution. It should be noted that unless the variation of pressure with re- 
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spect to time is known, it is not possible to calculate the velocity profile 
using eq. (32). It appears, therefore, that the velocity profile and the 
volumetric flow rate for this case cannot be computed using the above 
approach. This problem, however, has been solved elsewhere’96 by using 
a differential form of the Oldroyd equation. It may be noted, however, 
that the exact solutions for the velocity distribution and volumetric flow 
rate can be computed from eq. (32) if the flow is under a periodic pressure. 
To show this, we now consider the effect of viscoelastic properties on oscil- 
lating flow. 

OSCILLATING FLOW 

Let us assume that the periodic pressure gradient is 

(a(t’) = K cos wt’ (33) 

where K is a constant and w is the frequency. 
under this condition becomes 

The velocity distribution 

where Ai = ( 1 / 2 X l ) ( a t  - d a i 2  - &) and B,  = (1/2X1)(ai + daf2 - ,f3*). 
When the system reaches steady state long time after the flow started, eq. 
(34) reduces to 

+ sin wt. + 1 (35) 

where K1 = (1 + - f f y i  )/[(wz + A ? ) ]  and m 

In  the limiting case where the frequency is very small, eq. (35) 
reduces to 

cos wt.  (36) 
2K 

U(r,  t )  = - COH wt c 
a71 z T i 3  Jl(T,U) 471 

The velocity distribution becomes parabolic, as expected, and the flow is in 
phase with the pressure. 
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r /a  ( R a d i a l  d i s t a n c e )  

Fig. 3. Mean of velocity square profile for a Newtonian fluid. Case 1 :  Y~ 1.52 cmz/ 
sec; Q, 1.0 cm; W ,  15.5 cycles/sec. Case2: Y, 1.52 cmz/sec; a, 1.0 cm; W ,  15.5 cycles/sec. 

The volumetric flow rate can be obtained readily from eq. (36) : 

X sin w ( t  + cSi). (37) 

Equation (37) shows that each eigenvalue has its corresponding amplitude 
and phase angle. This fact suggests that the evaluation of viscoelastic 
parameters based on the experimental measurements of amplitude and 
phase angle is not practical unless eq. (37) converges very rapidly. 

It is of interest to compare eq. (36) with the velocity distribution of a 
Newtonian fluid which is derived in this work using the same method: 
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Fig. 4. Mean of velocity square profiles for visocelastic fluids. Case I: 1.52; 
XI, 5.03 X W ,  360; a, 0.2. Case2: v1 1.52; hl, 0.172; x2, 7.762 x 
lo-'; 01 360; al 0.2. Case 3: u1 1.52; Al, 5.03 X 10-2; X2, 3.35 x 10-2; w1 620; a, 
0.2. Case 4: YI 1.52; XI, 0.172; XZ, 7.76 X lo+; w1 620; a, 0.2. Units same as in 
Figs. 1-3. 

XZ, 3.35 X 

We are interested in the mean with respect to time of the velocity square 
which is defined as 

From eqs. (36) and (39), we find that the exact expression for the mean of 
the velocity square is 

For Newtonian fluids at  a high frequency it is known" that the mean of 
the velocity square shows a maximum near the wall at  (a - r ) d G  = 

2.28. This is shown in Figure 3. The mean of the dimensionless velocity 
square, U2(r)/[1/2(vK/o~)2], for a viscoelastic fluid is computed as a func- 

~ 
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tion of radial distance and the result is shown in Figure 4. The figure 
shows that a t  a given frequency the mean of the velocity square is sig- 
nificantly different from Newtonian fluids. For Newtonian fluids, the 
velocity profile across the tube radius flattens out and the maximum occurs 
near the wall, while for viscoelastic fluids this maximum occurs near the tube 
center. As the frequency is increased, this maximum point moves toward 
the wall. This seems to indicate that viscoelastic properties have a sta- 
bilizing effect on velocity profile. It is suggested that this mechanism 
might cause the delay in transition from laminar to turbulent flow. 
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